New design Employ our graduates
Avatar Image

Professor Dietmar Hutmacher

Science and Engineering Faculty,
Chemistry, Physics, Mechanical Engineering,
Biomedical Engineering and Medical Physics

Personal

Name
Professor Dietmar Hutmacher
Position(s)
Professor
Science and Engineering Faculty,
Chemistry, Physics, Mechanical Engineering,
Biomedical Engineering and Medical Physics
IHBI Member
Institute of Health Biomedical Innovation (IHBI),
IHBI Science and Engineering Projects,
IHBI Chem Physics Mech Engineering - Medical Devic
Discipline *
Other Biological Sciences, Biomedical Engineering, Medical Physiology
Phone
+61 7 3138 6077
Email
Location
View location details (QUT staff and student access only)
Qualifications

PhD (National University of Singapore)

Professional memberships
and associations
  • Tissue Engineering & Regenerative Medicine Society (TERMIS)
  • Australian Society of Biomaterials
Keywords

Bone & Biomaterials, Regenerative Medicine, Tissue Engineering

* Field of Research code, Australian and New Zealand Standard Research Classification (ANZSRC), 2008

Biography

Broad area of research: Infrastructure

Main research areas

Professor Hutmacher’s background is a strong combination of academic and industrial.  His expertise is in biomaterials, biomechanics, medical devices and tissue engineering.  He is one of the few academics to take a holistic bone engineering concept to clinical application.  More than 400 patients have been treated with the FDA-approved bone engineering scaffolds developed by Prof Hutmacher’s Singapore-based interdisciplinary research group.

Over the last 4 years, Professor Hutmacher has developed an international track record in adult stem cell research related to regenerative medicine.

Regenerative medicine/tissue engineering is a rapidly growing multidisciplinary field involving the life, physical and engineering sciences and seeks to develop functional cell, tissue and organ substitutes to repair, replace or enhance biological function that has been lost due to congenital abnormalities, injury, disease or aging. It includes both the regeneration of tissues in vitro for subsequent implantation in vivo as well as regeneration directly in vivo. In addition to having a therapeutic application, tissue engineering can have a diagnostic application where the engineered tissue is used as a biosensor. Engineered tissues can also be used for the development of drugs including screening for novel drug candidates, identifying novel genes as drug targets, and testing for drug metabolism, uptake, and toxicity.

Professor Hutmacher has three main areas of research:

  • Cartilage
  • Bone Graft
  • 3D Cell Cultures

Research area 1: Cartilage

Large cartilage defects are a significant cause of pain, immobility and decreased quality life for people world-wide. Clinical cartilage tissue engineering approaches are restricted to younger patients (<50) and defects smaller than 10 cm^2. We hypothesize that zonal cartilage characteristics are important for overcoming these current limitations. We aim to study the molecular characteristics of zonal chondrocytes under dynamic cell culture conditions and to differentiate mesenchymal stem cells into lubricant-producing chondrocytes. This work leads to the development of a novel cartilage engineering technology platform to deliver structural and functional zonal properties, and allow for treatment of older patients and larger defects.

Research area 2: Bone Graft

Bone grafts are frequently used to treat conditions in load-bearing regions of the body. In the present climate of increasing life expectancy with an ensuing increase in bone-related injuries, orthopaedic surgery is undergoing a paradigm shift from bone grafting to bone engineering, where a scaffold is implanted to provide adequate load bearing and enhance tissue regeneration. However, scaffolds in combination with internal or external fixation are in many cases not sufficient to regenerate a critical sized bone defect. Analysis of tissue engineering literature indicates that future generations of engineered scaffolds will not be successful by simply integrating drug delivery systems within the scaffolds. Instead, using knowledge of drug delivery and biomaterial science, multifunctional scaffolds, where the three-dimensional (3D) template itself acts as a biomimetic, programmable and multi-drug delivery device should be designed.

To our knowledge no multiple-growth-factor (GF)-releasing scaffold systems of high porosity (> 80%) are currently clinically available for the treatment of medium to high load-bearing bone defects. To address this therapeutic challenge we aim to marry two leading-edge scaffold technologies; biomechanically loadable composite scaffolds (produced by computer aided design and rapid prototyping) and microparticle delivery systems, incorporating important bone regeneration-related GFs which possess controllable release kinetics (Figure 1). We will combine a well established scaffold-technology platform developed by Professor Dietmar Hutmacher’s group at QUT, with the innovative controlled-release technology developed by Shakesheff’s group at Nottingham University to provide a leading edge solution to this therapeutic challenge. We will characterise and test these novel engineered bone graft systems (EBGS) both in vitro and in vivo.

We hypothesise that a composite scaffold (already successfully utilised in low-load bearing bone defects) can be biomechanically optimised and be combined with controlled delivery of angiogenic (PDGF/VEGF) and osteoinductive (BMP) molecules producing a biologically active EBGSs with mechanical properties suitable for load-bearing applications.

Research area 3: 3D Cell Cultures

Biomedical researchers have become increasingly aware of the limitations of conventional 2D tissue cell cultures where most tissue cell studies have been carried out. They are now searching for 3D cell culture systems, something between a petri dish and a mouse. It has become apparent that 3D cell culture offers a more realistic micro- and local-environment where the functional properties of cells can be observed and manipulated that is not possible in animal experiments.

Nearly all tissue cells are embedded in 3-dimension (3D) microenvironment in the body. On the other hand, nearly all tissue cells including most cancer and tumor cells have been studied in 2-dimension (2D) petri dish, 2D multi-well plates or 2D glass slides coated with various substrata. The architecture of the in situ environment of a cell in a living organism is 3D, cells are surrounded by other cells, where many extracellular ligands including many types of collagens, laminin, and other matrix proteins, not only allow attachments between cells and the basal membrane but also allow access to oxygen, hormones, and nutrients; removal of waste products and other cell types associated in tissues. The in vivo environment of cells consists of a complex 3D network of extra-cellular matrix nano to micro fibers with micro to nanopores that create various local microenvironments. 

Hence, there are several key drawbacks to 2D cell cultures. First, the movements of cells in the 3D environment of a whole organism typically follow a chemical signal or molecular gradient. Molecular gradients play a vital role in biological differentiation, determination of cell fate, organ development, signal transduction, neural information transmission and countless other biological processes. However, it is nearly impossible to establish a true 3D gradient in 2D culture.

Second, cells isolated directly from higher organisms frequently alter metabolism and alter their gene expression patterns when in 2D culture. It is clear that cellular structure plays a major role in determining cellular activity, though spatial and temporal extracellular matrix protein and cell receptor interactions that naturally exist in tissues and organs. The cellular membrane structure, the extracellular matrix and basement membrane significantly influences cellular metabolism, via the protein–protein interactions. The adaptation of cells to a 2D petri dish requires significant adjustment of the surviving cell population not only to changes in oxygen, nutrients and extracellular matrix interactions, but also to alter waste disposal.

Third, cells growing in a 2D environment can significantly alter production of their own extracellular matrix proteins and often undergo morphological changes. It is not unlikely that the receptors on cell surface could preferentially cluster on parts of the cell that directly expose to culture media rich in nutrients, growth factors and other extracellular ligands; whereas, the receptors on the cells attached to the surface may have less opportunity for clustering. Thus, the receptors might not be presented in correct orientation and clustering, this would presumably also affect communication between cells.

The development of new 3D culture systems, particularly those biologically inspired nanoscale scaffolds and/or hydrogels mimicking in vivo environment that serve as permissive substrates for cell growth, differentiation and biological function is a most actively pursuit area of the Hutmacher lab. These novel 3D culture systems will be useful not only for further our understanding of cell biology in a more physiological in vitro environment, but also for advancing cancer research, tissue engineering & regenerative medicine.

Patents

EP 701417A1: Anastomosis Device
WO 9732616A1: Covering membrane, Molded Bodies Produced There from and Process for the Production Thereof
WO 9734546A1: Producing a Bone Substitute Material
WO 9726028A2:  Fastening Nail
Filed: Design and Fabrication of PCL Scaffolds via Fused Deposition Modeling
Filed: Biaxial Continuous Flow Bioreactor
Filed: Bioresorbable Burr Plug

Grants

Professor Hutmacher has received over $US6.5M in research funding since 1991.

Selected list of awarded grants

Ongoing research support

  • Start up grant from QUT for Chair over a period of 3 years AUD 250,000/year
  • ARC Grant 3 years AUD 220,000/year
  • Prostate Cancer Foundation 2 years AUD 200,000/year

Complete research support

1991-1992 

  1. Landesministerium fuer Bildung, Wissenschaft, Forschung und Technologie Baden-Wuertemberg,’The development of a bioresorbable device for the refixation of bony fragments in orthopedic surgery’, Principle Investigator, 1991-1992, US$ 210,000
  2. Landesministerium fuer Bildung, Wissenschaft, Forschung und Technologie Baden-Wuertemberg,’The development of a bioresorbable screw-plate system for cranio- and maxillofacial surgery’, Principle Investigator, 1991-1992, US$ 100,000
  3. University of Ulm, ‘Experimental evaluation of Poly (L-lactide-co-D,L-lactide) in the ratio 97,5/2,5 ligament for anterior cruciate ligament augmentation’, Co-Investigator, 1991-1992, US$ 120,000

1992-1993 

  1. Bundesministerium fuer Bildung, Wissenschaft, Forschung und Technologie, ‘Guided bone regeneration around dental implants with large circumferential osseous defects with a new bioresorbable device. An experimental study on the monkey’, Principle Investigator, 1992-1993, US$ 60,000

1993-1994

  1. Bundesministerium fuer Bildung, Wissenschaft, Forschung und Technologie, ‘Bone regeneration around endosseous oral implants using a new bioresorbable membrane ‘, Principle Investigator, 1993-1994, US$ 35,000
  2. Bundesministerium fuer Bildung, Wissenschaft, Forschung und Technologie, ‘Experimental Investigation of a new bioresorbable device to facilitate guided bone regeneration around dehisced implants‘, Principle Investigator, 1993-1994, US$ 28,000
  3. Bundesministerium fuer Bildung, Wissenschaft, Forschung und Technologie, ‘Effect of calcium hydroxide paste on the bone healing and osseointegration around titanium dental implants  ‘, Principle Investigator, 1993-1994, US$ 20,000
  4. Landesministerium fuer Bildung, Wissenschaft, Forschung und Technologie Thueringen, ‘Development and processing of a polyurethane-glass ceramic biomaterial for artificial hip cups. Co-Investigator, 1993-1994, US$ 120,000
  5. Landesministerium fuer Bildung, Wissenschaft, Forschung und Technologie Thueringen, ‘Development and manufacturing of fast and slow  resorbing glass ceramics’, Co-Investigator, 1993-1994, US$ 75,000

1995-1999

  1. Boehringer Ingelheim, ‘The market of bioresorbable polymers and devices in Europe -State of the Art/Future Perspectives, Principle Investigator,1995, US$ 6,000
  2. Bundesministerium fur Bildung, Wissenschaft, Forschung und Technologie, ‘Guided bone regeneration – The investigation of a new design concept and a processing technology for bioresorbable composite membranes ‘, Principle Investigator,1995-1999, US$ 65,000
  3. IMZ GmbH, ‘The development of a tissue engineered membrane for soft and hard tissue repair’, Principle Investigator,1996-1999, US$ 60,000

1999 – 2001

  1. National University of Singapore, Faculty of Engineering, The Design and Processing of Three-Dimensional Bioresorbable Scaffolds for Tissue Engineering a Bone/Cartilage Interphase, Co- Principle Investigator, 1999 – 2001, US$ 160,000

2000 – 2002

  1. National University of Singapore, Faculty of Engineering, Flow Environment and Cell Growth in Tissue Engineering, Co-Investigator, 2000 – 2002, US$ 60,000
  2. National University of Singapore, Faculty of Engineering, Application of Biodegradable Polymeric Microspheres for Delivery of Cell Growth Factors in Tissue Engineering of Heart Valves, Co-Investigator, 2000 – 2002, US$ 80,000
  3. Singapore Polytechnic, Design and Fabrication of a Bioreactor for Tissue Engineering Applications, Co-PI Investigator, 2000 – 2002, US$ 125,000
  4. Singapore General Hospital, Reconstruction of Craniofacial Defects with Tissue Engineered Bone Transplants – An Animal Study in Yorkshire Pigs, Collaborator, 2000 – 2001, US$ 18,000
  5. National University of Singapore, Faculty of Dentistry, Tissue Engineering of a Autogenous Transplant Around Dental Implants in the Atrophic Alveolar Ridge Using a Bioresorbable 3D Scaffold, Osteoblasts and Bone Growth Factors, Collaborator, 2000 – 2002, US$ 120,000
  6. ITI Foundation, Waldenburg Switzerland, The augmentation of Atrophied Mandibles via Tissue Engineered Bone – A Clinical Study, Collaborator, 2000 – 2002, US$ 20,000
  7. National University of Singapore, Faculty of Medicine. The Efficacy of BMP-7 and TGF-beta1 in transforming Mesenchymal Stem Cells into bone in a biodegradable polymer scaffold- an in vitro study. Collaborator, 2000 – 2002, US$ 65,000

2000 – 2003

  1. National University of Singapore, Faculty of Medicine, The Application of a Bioresorbable 3D Scaffold, Mesenchymal Stem Cells and Bone Growth Factors for Tissue Engineering a Articular Bone/Cartilage Interphase, Collaborator, 2000 – 2003, US$ 120,000
  2. National University of Singapore, Faculty of Engineering, Robotic Micro-assembly Fabrication of Three-dimensional Bioresorbable Scaffolds for Tissue Engineering, Co- Principle Investigator, 2000 – 2003, US$ 100,000
  3. National University of Singapore, Faculty of Engineering, Development of A Desk-Top Rapid Prototyping (RP) System for Tissue Engineering, Co- Investigator, 2000 – 2002, US$ 35,000
  4. National University of Singapore, Faculty of Engineering, Relationship between material stiffness and cell adaptation in tissue engineered scaffolds, Collaborator, 2001 – 2003, US$ 100,000
  5. National University of Singapore, Faculty of Medicine. The Experimental Evaluation of a Tissue Engineered Bone Graft for Cranial Reconstruction, Co- Principle Investigator, 2001 – 2003, US$ 120,000
  6. National University of Singapore, Faculty of Dentistry, Tissue Engineering of an Autogenous Periodontal Transplant for the Regeneration of the Periodontium, Co- Investigator – 2003, US$ 110,000

2002-2004

  1. National University of Singapore, Office of Life Sciences, NUS/OLS Young Investigator Award Tissue Engineering Bone and Cartilage- Characterization and Large Scale Culturing of Human Bone Marrow Derived Mesencymal Stem Cells in Novel Scaffold Architectures, Principle Investigator, 2002-2004, US$ 350,000
  2. Singapore Biomedical Research Council, The Study of Tissue Engineered Osteochondral and Cranial Bone Grafts in an Goat Model, Principle Investigator, 2002-2004, US$ 450,000

2003-2004

  1. Singapore Defence Medical Research Institute, Tissue Engineering of a Skin Graft, Principle Investigator, 2003-2004, US$ 40,000
  2. National Medical Research Council, Singapore, Role of OP1 in enhancing anterior lumbar interbody fusion allografts, 2003-2004, Co-Investigator US $ 150,000
  3. NUS Tissue Engineering Program “A Proposed Flagship Research Program at the National University of Singapore”, Co-Investigator U$ 1.5 Mill. 2004-2005

2003-2006

  1. Singapore Biomedical Research Council, Spine Tissue Engineering, Co-Investigator, 2003-2006, US$ 450,000
  1. Singapore Biomedical Research Council, Mesenchymal Stem Cell Tissue Engineering, Co-Investigator, 2003-2006, US$ 1 Mill
  2. Singapore Biomedical Research Council, Development of Autologous Corporal Tissue For Male Erectile Dysfunction, Co-Investigator, 2003-2006, US$ 400,000
  3. National Medical Research Council, Singapore, Tissue engineered prefabricated vascularised bone flaps., 2004-2005, Co-Investigator US$ 70,000

2003-2008

  1. NIH, Runx2 expression on gene/protein expression and matrix mineralization by cells cultured in 3-D polymeric scaffolds, Collaborator, 2003-2008, US$ 350,000
  2. AO Research Fund, Switzerland, Development of a Tissue engineered bone substitute for bridging large, weight bearing, cortical defects. An experimental study in the adult sheep, Co-Investigator, 2004-2005 US$ 70,000

2005-2007

  1. Singapore Biomedical Research Council, Bone tissu

    e engineering by using novel scaffold systems doped with heparan sulphate. Principle Investigator, 2005-2007, US$ 350,000
  2. 2006 – 2009    A Composite Material Technology Platform For Bone Engineering Principle Investigator, 2007-2007, US$ 500,000

Awards and recognitions 

Over the last 9 years Professor Hutmacher has gained a worldwide reputation in the field of tissue engineering/regenerative medicine. He received the inaugural National University of Singapore Young Investigator Award in 2002, which included a grant of $550 000. Professor Hutmacher and his students have received numerous research awards including the Innovation Award of the German Industry and Commerce Association, Award for Best Table Clinic of the Twelfth Annual Meeting of the Academy of Osseointegration, and Young Investigator Award of the 10th International Conference on Biomedical Engineering.
In 2003 his research team was awarded the Best Article published in the International Journal of Oral Maxillofacial Implants for the 2002 article “Evaluation of a Tissue Engineered Membrane-Cell Construct for Guided Bone Regeneration”.
He received a gold award in the Asian Innovation Awards in 2004, and was featured in the Far East Economic Review, a publication in the Wall Street Journal Group; in that year his research team also received the IES Prestigious Engineering Achievement Award for the conference paper Platform Technology in Tissue Engineered Scaffolds: Integration of Medical Imaging, Biomaterials and Advanced Manufacturing. He has received 7 best conference paper awards including:
1st prize (oral presentation) at the 6th Annual International Conference and Exposition of the Tissue Engineering Society International, Orlando, USA, 2003;
Winner of the Resident’s Research presentation at the Singapore Society of Otolarynology Annual meeting, Singapore, 2004;
Winner of “The Mimics Innovation Award” in category 1: Innovative implant design system. Annual Conference of “Computer Guided Implantology & 3D Medical Modelling”, Leuven, Belgium, 2005. (€5000).

 

Over the last 9 years Professor Hutmacher has gained a worldwide reputation in the field of tissue engineering/regenerative medicine. He received the inaugural National University of Singapore Young Investigator Award in 2002, which included a grant of $550 000. Professor Hutmacher and his students have received numerous research awards including the Innovation Award of the German Industry and Commerce Association, Award for Best Table Clinic of the Twelfth Annual Meeting of the Academy of Osseointegration, and Young Investigator Award of the 10th International Conference on Biomedical Engineering.

In 2003 his research team was awarded the Best Article published in the International Journal of Oral Maxillofacial Implants for the 2002 article “Evaluation of a Tissue Engineered Membrane-Cell Construct for Guided Bone Regeneration”.

He received a gold award in the Asian Innovation Awards in 2004, and was featured in the Far East Economic Review, a publication in the Wall Street Journal Group; in that year his research team also received the IES Prestigious Engineering Achievement Award for the conference paper Platform Technology in Tissue Engineered Scaffolds: Integration of Medical Imaging, Biomaterials and Advanced Manufacturing.

He has received 7 best conference paper awards including:

  • 1st prize (oral presentation) at the 6th Annual International Conference and Exposition of the Tissue Engineering Society International, Orlando, USA, 2003
  • Winner of the Resident’s Research presentation at the Singapore Society of Otolarynology Annual meeting, Singapore, 2004
  • Winner of “The Mimics Innovation Award” in category 1: Innovative implant design system. Annual Conference of “Computer Guided Implantology & 3D Medical Modelling”, Leuven, Belgium, 2005. (€5000).

 

Career History

2008 – Present Adjunct Professor at Georgia Tech

2007 – Present Professor and Chair Regenerative Medicine, Institute of Biomedical Innovation, QUT

2005 – 2007
Joint Appointment as Associate Professor (Tenure), Division of Bioengineering, Department of Orthopedic Surgery, National University of Singapore

2001 – 2005
Joint Appointment as Assistant Professor, Division of Bioengineering, Department of Orthopedic Surgery, National University of Singapore

1999 – 2001 Senior Research Fellow, National University of Singapore

1998 – 1999
Managing Director, Medical Monitor gmbh

1995 – 1998 Assistant Professor (part time), Department of Mechanical Engineering, University for Applied Science. Offenburg, Germany

1995 – 1999
Hutmacher Implant Innovation (Self-Employed)

1993 – 1994 Managing Director, BIOVISION gmbh

1990 – 1994 Senior Lecturer (part time), Dept of Mechanical Engineering, University for Applied Science. Offenburg, Germany

1989 – 1992 Senior Lecturer (part time), Dept of Mechanical Engineering, University for Applied Science. Offenburg, Germany

1989 – 1992 Head of R&D Department, Biomaterials, G. Hug Gmbh

1989 – 1989
R&D Engineer, Boehringer Mannheim

This information has been contributed by Professor Dietmar Hutmacher.

Teaching

Teaching area

  •  Cell and Molecular Biosciences

Teaching history

  • 1991– 1998: Topic “Biomaterials”, “Medical Devices” and “Biomechanics”, summer and winter term course for engineering students
  • 1997– 1998: Topic “Managerial Tools for Engineering Disciplines”, summer and winter term course for engineering students and faculty
  • 2001- 2005: Invited and Guest Lecturer at Short Courses and at overseas universities on Tissue Engineering and Biomaterials (see also under continues education seminars)
  • 1 Semester 2002 to 2004: Advanced Biomaterials, Graduate Course (Course Coordinator)
  • 1 Semester 2003: Principles in Tissue Engineering, Undergraduate Course (Course Coordinator)
  • 1 Semester 2004: Principles in Tissue Engineering, Undergraduate Course (Course Coordinator)
  • 2 Semesters 2003: Advanced Tissue Engineering, Graduate Course (Course Coordinator)
  • 1 Semester 2004: Principles in Tissue Engineering, Undergraduate Course (Course Coordinator)
  • 1 Semester 2004: Bioengineering Design, Undergraduate Course (Mentor)
  • 2 Semesters 2004: Advanced Tissue Engineering, Graduate Course (Course Coordinator)
  • 1 Semester 2005: Principles in Tissue Engineering, Undergraduate Course (Course Coordinator)
This information has been contributed by Professor Dietmar Hutmacher.

Experience

Interests and community service

  • 1991 – 1998: Kiwanis Club Freiburg Zaehringen
  • 1994 – 1996: Secretary
  • 1997 – 1998: Vice-President
  • 2000 – 2001: Member, Rotary Club of Bukit Timah, Singapore
  • 2001 – 2002: Vice-President, Rotary Club of Bukit Timah, Singapore
  • 2002 – 2003: Vice-President, Rotary Club of Bukit Timah, Singapore
  • 2003 – 2004: President Elect, Rotary Club of Bukit Timah, Singapore
  • 2004 – 2005: President, Rotary Club of Bukit Timah, Singapore
This information has been contributed by Professor Dietmar Hutmacher.

Publications


For more publications by this staff member, visit QUT ePrints, the University's research repository.